Topic 7: Propagation

Academic Year 2013-2014

P1.- Suppose a ground with relative permittivity $\varepsilon_{r}=15$ and conductivity $\sigma=12 \cdot 10^{-3}$. Obtain the reflection coefficient (vertical and horizontal) with frequency $f=1 \mathrm{MHz}$ and incidence angle $\psi=40^{\circ}$.

P2.- Suppose a link with antenna heights $h_{t}=60 \mathrm{~m}$ and $h_{r}=30 \mathrm{~m}$, with distance $d=$ 800 m , frequency $f=1 \mathrm{MHz}$ over a flat ground with reflection coefficient $\mathrm{R}=$ $0.74 \cdot \exp (\mathrm{j} \cdot \pi / 12)$. Obtain:
a) The propagation losses with the flat earth model.
b) The propagation losses with the flat earth model for long distances with $d=5 \mathrm{~km}$.

P3.- Suppose a wireless link with distance $d=10 \mathrm{~km}$, frequency $f=2.4 \mathrm{GHz}$. Obtain:
a) The radius of the first Fresnel's zone to distances $2.5 \mathrm{Km}, 5 \mathrm{Km}$ y 7.5 Km from the transmitter.
b) The radius of the second Fresnel's zone to distances $2.5 \mathrm{Km}, 5 \mathrm{Km}$ y 7.5 Km from the transmitter.

P4.- Suppose a wireless link with $\mathrm{P}_{\mathrm{Tx}}=1 \mathrm{~W}$, frequency $f=2.4 \mathrm{GHz}$, with a sharp obstacle located at distances $d_{1}=5 \mathrm{Km}$ and $d_{2}=4 \mathrm{Km}$, respectively from the transmitter and the receiver. Suppose a propagation losses model in free space plus diffraction losses and obtain the received power:
a) If the height margin is $h=-5.9 \mathrm{~m}$.
b) If the height margin is $h=11.78 \mathrm{~m}$.

P5.- \quad Suppose a wireless link with frequency $f=2.4 \mathrm{GHz}$ and distance $d=20 \mathrm{Km}$, with two obstacles located at distances $s_{1}=5 \mathrm{Km}$ and $s_{3}=7 \mathrm{Km}$, respectively from the transmitter and the receiver. Obtain the diffraction losses:
a) If the normalized margins are $v_{1}=-0.35$ and $v_{2}=-0.25$.
b) If the normalized margins are $v_{1}=0.35$ and $v_{2}=0.25$.

P6.- Suppose a wireless link with frequency $f=0.7 \mathrm{GHz}$ distance $d=5 \mathrm{Km}$, with transmitter height $h_{b}=30 \mathrm{~m}$ and receiver height $h_{m}=2 \mathrm{~m}$. Obtain the propagation losses with the Okumura-Hata model:
a) In a metropolitan area.
b) In a small city.

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689454470

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 454470

